
Securing Kubernetes
With InsightCloudSec
Rapid7’s Cloud-Native Security Platform

WHITEPAPER

©RAPID7 2021

TABLE OF CONTENTS

Kubernetes: The Innovation Engine for Cloud-Native Applications 3

Game-Changing Enterprise Cloud Security

The Kubernetes Software Development Lifecycle: Identifying
& Mitigating Risks

STAGE 1: Development of Cloud-Native Applications With Kubernetes

STAGE 2: Distribution of Cloud-Native Applications With Kubernetes

STAGE 3: Deploying Cloud-Native Applications With Kubernetes

STAGE 4: Runtime for Cloud-Native Applications With Kubernetes

Cloud-Native Security Must Match the Kubernetes Software Lifecycle

4

5

5

7

8

9

11

Kubernetes Secrets

Scanning and Hardening

Security Drift Checks

Audit Logs

Supply Chain Infiltration

Build Leaner Containers

Compliance Checks

Microservices

Developer and Security Coordination

5

7

8

10

6

8

9

10

7

Securing Kubernetes With InsightCloudSec 2

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services that fa-
cilitates both declarative configuration and automation. The name Kubernetes originates from Greek, meaning helmsman
or pilot. Kubernetes software was developed by Google and open sourced in 2014. Since its creation, Kubernetes has
benefited companies by improving resource allocations and shortened software development cycles.

Kubernetes is the natural evolution of developers’ needs to manage resources for multiple applications running in a
shared space. Back when applications were all running on an organization’s servers, resource sharing was often an issue
- if one application monopolized resources then it would starve others. VMs partially alleviated the problem by creating
self-contained, isolated environments that prevented applications from competing directly with each other for resources.
VMs could provide an environment for applications to run on that might even present multiple physical machines as a
single system, enabling excellent scaling. Virtualization also provided a measure of security, as applications in one VM
would not be able to access the data in another VM. However, because VMs required all the components of a full ma-
chine (including the operating system on top of the virtualized hardware), they created overhead challenges.

Containers extended the concept of virtual machines by sharing common resources like the OS and making them more
lightweight in comparison to VMs. While a container has its own resources - including a filesystem, share of compute
resources, memory, and process space - they can be run on the cloud and wherever a compatible operating system is
offered, as they are decoupled from the underlying infrastructure. What containers lacked, however, was a way to ensure
they are running properly with zero downtime. If a container goes down, a system is needed to immediately start a re-
placement container.

Kubernetes provides a resilient and reliable way to manage containers and distributed systems. Kubernetes manages
deployment, scaling, and failover for applications, with tools for load balancing, storage orchestration, automatic bin
packing, automated restarts of containers, and Secrets management.

Kubernetes does more than just provide management and orchestration tools for containers. It enables a software devel-
opment process with multiple development teams working in parallel to develop, test, and deploy software rapidly and
efficiently. Instead of one major software release every year, enterprises using Kubernetes can release improvements to
their applications weekly, daily, or even multiple times a day, enabling developers to be agile and responsive like never
before, and on a global scale.

Kubernetes: The Innovation Engine for
Cloud-Native Applications

Securing Kubernetes With InsightCloudSec 3

Securing Kubernetes With InsightCloudSec 4

Enterprises must clearly understand the two major structural changes that Kubernetes brings to software development
to effectively secure the development process.

1. Kubernetes applications are not limited to static server clusters or even virtualized environments. Kuber-
netes enables lightweight application containers to be deployed on any compatible operating system and infra-
structure. Kubernetes-based applications are therefore extremely elastic and can scale and self-repair faster and
more cost effectively than with older methods of running applications.

Traditional cloud security methods assume that the security perimeter is definable. A company’s perimeter might
be a server, data center, or a network of servers, data centers, and cloud providers. Security teams depend on this
ability to define borders to monitor and secure S3 buckets, Azure instances, and remote access. But with Kuber-
netes, containers might be deployed anywhere and may interact with each other in unknown ways. Even when
container interactions are carefully mapped, hackers are constantly looking for ways to infiltrate and exploit vulner-
abilities, including the nightmare scenario of container escape, where a container is taken over by an intruder and
used to access private information or run unauthorized functions, such as cryptomining.

Key takeaway: Security teams must understand how Kubernetes-based applications function and employ security
measures to mitigate the novel risks introduced by Kubernetes-native applications.

2. The automated rollout capabilities of Kubernetes enables developers to deploy changes to containers in
a controlled manner. Development teams can now structure their work in a new way and work in smaller, parallel
teams to deploy changes independently of others. This move away from monolithic software engineering enables
rapid development and deployment of applications and upgrades, so companies can be more agile and responsive.

The rapid development, testing, and deployment enabled by Kubernetes introduces risks that may be structural or
process based. For example, developers seeking to quickly test functionality may code passwords in the open or
bypass critical security configurations. An analysis conducted by Alcide in 20191 showed that 89% of Kubernetes
deployments coded sensitive passwords in the open and did not use the native Secrets management functionality
offered in Kubernetes. In another example, developers may turn off security restrictions and forget to turn them
back on before moving code to production, a vulnerability-creating process called security drift.

Key takeaway: Security teams must understand the Kubernetes software development lifecycle to proactively iden-
tify and fix areas where vulnerabilities might be introduced and where security drifts might occur.

Game-Changing Enterprise Cloud Security

1 Alcide: New Analysis by Alcide Finds 89% of Kubernetes Deployments Not Leveraging Secrets Resources: http://www.globenewswire.
com/news-release/2019/07/15/1882828/0/en/New-Analysis-by-Alcide-Finds-89-of-Kubernetes-Deployments-Not-Leveraging-Secrets-Re-
sources.html

http://www.globenewswire.com/news-release/2019/07/15/1882828/0/en/New-Analysis-by-Alcide-Finds-89-of-Kubernetes-Deployments-Not-Leveraging-Secrets-Resources.html
http://www.globenewswire.com/news-release/2019/07/15/1882828/0/en/New-Analysis-by-Alcide-Finds-89-of-Kubernetes-Deployments-Not-Leveraging-Secrets-Resources.html
http://www.globenewswire.com/news-release/2019/07/15/1882828/0/en/New-Analysis-by-Alcide-Finds-89-of-Kubernetes-Deployments-Not-Leveraging-Secrets-Resources.html

Developing cloud-native applications with Kubernetes enables novel workflows that increase agility and innovation. The
price for these novel workflows, however, is increased security risk. Below, we outline these risks and examine the Ku-
bernetes development lifecycle to identify where vulnerabilities are introduced and how enterprises can mitigate them.

The lifecycle of a cloud-native application can be divided into four stages:

Traditionally, much of the security hardening for applications was done after the development stage. Once development
was completed, security teams would assess the code, identify risks and vulnerabilities, and then send the code back for
remediation. With cloud-native applications, teams are working in parallel to deliver new releases frequently, and there is
simply no time to go back and forth between the security professionals and the software engineers.

Enterprises must seek efficient and effective ways to instill security into the development stage to ensure competitive
software development speeds. This practice of shifting security responsibility “left” into the development stage means
developers need to learn some new habits and skills to ensure security.

Kubernetes pods sometimes contain sensitive information such as usernames, passwords, and SSH keys. Developers
may hard code sensitive information and systems as a shortcut during development, or because they mistakenly trust
that the containers within the workload are safe. When credentials are coded in the open like this, they are vulnerable to
being seized and exploited by hackers. Kubernetes has a built-in solution to protect sensitive information called Secrets.
Kubernetes Secrets allows engineers to encrypt passwords and other data so that it can only be accessed by authorized
users and processes. However, a study by Alcide in 2019 revealed that 89% of deployments were not using the
Kubernetes Secrets, leaving sensitive information exposed.

Kubernetes Secrets

The Kubernetes Software Development
Lifecycle: Identifying & Mitigating Risks

1. Development
2. Distribution
3. Deployment
4. Runtime

STAGE 1: Development of Cloud-Native
Applications With Kubernetes

Securing Kubernetes With InsightCloudSec 5

http://www.globenewswire.com/news-release/2019/07/15/1882828/0/en/New-Analysis-by-Alcide-Finds-89-of-Kubernetes-Deployments-Not-Leveraging-Secrets-Resources.html

Development teams should train engineers to use Kubernetes Secrets as a matter of habit, but enterprises shouldn’t
stop there. Gartner estimates2 that through 2022, 95% of security breaches will be the result of human error. Com-
panies should provide developers with an automated monitoring tool to scan and detect sensitive information that has
been left coded out in the open and flag it for immediate remediation.

We next recommend developers begin with a strategy that assumes all code might be compromised upon first contact.
That way, if a container does become compromised, the rest of the application will be able to limit the spread of damage
through tight security controls.

Enterprises that build Kubernetes-based cloud applications have other means to boost efficiency besides parallel devel-
opment teams. One method is to utilize off-the-shelf and third-party code, primarily open source, to speed up the devel-
opment process. A study by Sonatype3 estimates that as much as 80% to 90% of the code in cloud-native applications
contains open source components. Enterprises concerned with security must expand their coverage area to focus not
only on the security practices of the programmers, but also to encompass the third-party code they integrate into their
work.

The software supply chain is often taken for granted by security professionals, leaving it vulnerable to hackers seeking
creative, indirect ways to compromise software. At its most benign, security vulnerabilities in off-the-shelf code might
simply be inadvertent. At its worst, a trojan horse could bring malicious code into an enterprise’s applications to steal
data or hijack resources for activities such as distributed hacking or cryptomining.

At Rapid7, we advise our customers to begin with a clean slate and configure deployments in accordance with the best
practices recommended by Kubernetes right from the start. The default configuration is typically optimized to make it
easily accessible to developers, but a security-conscious team will begin by patching and updating all the software and
then hardening the environment by locking down the configuration.

Supply Infiltration

Rapid7’s Key Recommendations:

Implement a starting environment
that is fresh with clean code.

Install the latest patches
and updates.

Configure according to Kubernetes’
best practices for security.

Securing Kubernetes With InsightCloudSec 6

2 Gartner: Is the Cloud Secure? https://www.gartner.com/smarterwithgartner/is-the-cloud-secure/
3 Sonatype: 2017 State of the Software Supply Chain Report: https://www.sonatype.com/2017-state-of-the-software-supply-chain-report

https://www.gartner.com/smarterwithgartner/is-the-cloud-secure/
https://www.sonatype.com/2017-state-of-the-software-supply-chain-report
https://www.gartner.com/smarterwithgartner/is-the-cloud-secure/

Organizations shifting their security responsibilities “left” into the developer’s domain encounter a lot of human friction
that slows down software development. Developers can’t be expected to be security experts. Oftentimes, the dev team
will face headwinds when trying to learn how to implement more secure code that will pass the security team’s checks.

The distribution stage is where the enterprise builds container images and artifacts. This is where developers should im-
plement security infrastructure to ensure that the supply chain is secure and that the components used in the application
code are not vulnerable. The distribution stage is where code scanning is implemented.

Container images in the software lifecycle pipeline require continuous, automated scanning and updates to ensure
safety. Vulnerabilities, malware, insecure coding, and other risks must not only be prevented or detected, but they must
be stopped from propagating throughout the application. Containers need to be checked, and then they must be cryp-
tographically signed to ensure safety and prevent tampering.

At Rapid7, we advise our customers to secure these potential areas of security risk in the distribution stage of the Kuber-
netes software lifecycle.

One effective way to introduce security expertise to the devel-
opment group and increase compliance with security require-
ments is to designate a security liaison within the development
team. The liaison can work with the security team to map out
security requirements and then guide the development team in
its implementation.

Both teams are efficiently served without the turbulence of
retraining all the developers or blocking all code from passing
through to production.

One effective way to
introduce security expertise
to the development group
and increase compliance with
security requirements is to
designate a security liaison
within the development team.

Developer and Security Coordination

Securing Kubernetes With InsightCloudSec 7

STAGE 3: Deploying Cloud-Native Applications
With Kubernetes

Consider implementing the following practices:

1. Use admissions control in production to limit noncompliant resources from being admitted to the cluster.
2. Reduce the runtime privileges of workloads and avoid running them as root or with any elevated privileges.
3. Run workloads with an immutable file system.
4. Apply segmentation and isolation policies based on the workload at runtime.
5. Apply network policies.
6. Control network access to worker nodes.

First, developers should employ automated scanning tools to establish that software has up-to-date patches to minimize
risk in production. Automated scanning will also help detect malware and compromised open source code that may have
infiltrated the code. At this stage, developers should also check for regulatory compliance to PCI, GDPR, and
other relevant laws and standards.

In addition to detection of risks or malware, developers must install a robust procedure for remediating or hardening
security flaws. Vulnerability scanners must provide results that are actionable for security teams.

As it turns out, vulnerable code in container images is not always exploitable. Containers may harbor security flaws or
even malware in superfluous code that will never be executed in production. Such code is not dangerous to the applica-
tion, but its presence will trigger time-wasting security alerts during scanning.

In the rush to complete container images and push them to production, developers may inadvertently include superflu-
ous code. Rapid7 therefore recommends creating a well-defined process for building container images that will avoid
unnecessary code that will generate false positives during security scans. By building leaner containers, developers will
reduce the time they spend on tracking irrelevant threats.

As developers create code, they may bypass security protections or loosen access restrictions for testing purposes. Too
often and too easily, these protections are not restored before the code is deployed. It is important to scan the code for
security drifts that may have been introduced during development and prevent the drifts from going into production.

Employ a scanner that can detect if security configurations conform to the desired standard for all workloads, such as
the use of Kubernetes Secrets resources, RBAC levels, and confirming that deployment packages are not configured to
run with elevated privileges. The automated scanner must be able to detect security issues and automatically prevent
them from going into production.

The deployment stage is when the enterprise conducts final checks before putting code into production. Essentially, the
code is considered complete and secure, and the enterprise is executing a “pre-flight” checklist to ensure it complies
with the enterprise’s security and regulatory compliance policies.

Build Leaner Containers

Security Drift Checks

STAGE 3: Deploying Cloud-Native Applications
With Kubernetes

Securing Kubernetes With InsightCloudSec 8

The distribution stage is an excellent opportunity to ensure the security of container images and artifacts before putting
them into production. By confirming security or identifying vulnerability at this stage, developers can remediate and hard-
en images and artifacts so they can be deployed with confidence.

Scanning & Hardening

4 Verizon 2020 Payment Security Report: https://www.verizon.com/business/resources/reports/payment-security-report/

Securing Kubernetes With InsightCloudSec 9

Enterprises face significant regulatory risks as countries enact protections for their citizens conducting business online.
PCI, GDPR, CCPA, and other regulations provide guidelines to companies seeking to avoid fines and liability. In a report
by Verizon on payment security, about 54% of companies in Europe and 61% of companies in America fail to comply
with PCI DSS, the Payment Card Industry Data Security Standard.

Rapid7 has found that companies predominantly don’t
use Kubernetes Secrets resources. This shows why it’s
important to have automated systems in place to identify
security and compliance risks. We therefore recommend
enterprises employ an automated tool for scanning code
during these pre-flight checks. Compliance for Kuberne-
tes workloads takes on extra significance since stan-
dards such as PCI were not written with Kubernetes in
mind. As a result, regulations often reference traditional

server architectures, forcing developers to ensure Kubernetes compliance by determining the cloud-native analogs
needed to comply with regulations.. Due to this, Rapid7 recommends compliance scanning tools that are purpose built
for Kubernetes.

The runtime stage is where developer and security teams, having identified and remediated all possible known threats
and vulnerabilities, encounter the unknown: the undetected or novel vulnerabilities and intrusion strategies of hackers.

Compliance Checks

Examples of security and privacy compliance checks:

The cloud-native runtime environment encompasses the following:

• Check for firewalls and firewall configurations to protect cardholder data.
• Prohibit direct public access from the internet to any system component in the cardholder data environment.

• The infrastructure where workloads are executed.
• The service layer abstractions that help containers and microservices interact.
• Security controls and network traffic monitoring from the runtime providers.

The runtime stage is where
developer and security teams, having
identified and remediated all possible
known threats and vulnerabilities, en-
counter the unknown: the undetected
or novel vulnerabilities and intrusion
strategies of hackers.

STAGE 4: Runtime for Cloud-Native Applications
With Kubernetes

https://www.verizon.com/business/resources/reports/payment-security-report/
https://www.verizon.com/business/resources/reports/payment-security-report/
https://www.verizon.com/business/resources/reports/payment-security-report/

The elastic and ephemeral nature of Kubernetes makes it hard to trace the paths and actions taken by hackers. Con-
tainers that were used in an attack might have only existed for moments during runtime. Kubernetes Audit Logs provide
a detailed record of what’s happening in a workload, and are invaluable for reconstructing past activity and observing
workloads in real-time for abnormal or suspicious activity. Be aware that audit logs are not always enabled in some man-
aged Kubernetes deployments, so organizations should be sure to check the audit log status.

Audit logs are challenging to understand and time consuming to analyze manually. Therefore, Rapid7 recommends auto-
mation and machine learning when monitoring or analyzing logs. Automated log monitoring tools can watch Kubernetes
Audit Logs for risky behaviors. For example, an enterprise might set up an exception where nobody is allowed to dump
compliant data from the log. Compliance officers would then be notified if this occurs, as it could be a data breach.

Since Kubernetes decouples containerized applications from the underlying infrastructure it runs on, workloads are much
more flexible as to where in the cloud they may be executed. This provides enterprises with profound scalability and
agility. But, due to the distributed nature of Kubernetes-based applications, Kubernetes does not easily fit into the defini-
tions of security perimeters used by traditional security software, such as firewalls. With Kubernetes, there is not a clear
definition of what falls within or outside of the “perimeter,” which makes securing these applications tricky.

More broadly, machine learning can develop a picture of what typical, secure behavior looks like in the workload and use
it to identify outlier behaviors that may indicate nefarious activity. For example, in the case of credential theft, a Kuber-
netes Audit Log monitor would be able to identify if an attacker logs into the Kubernetes cluster in a fashion that doesn’t
match typical activity for the team member.

At this point, enterprises must utilize advanced and automated monitoring solutions to detect unauthorized activity and
block intruders. Here are some areas to watch.

Audit Logs

Microservices

Kubernetes Audit Log monitoring detects:

• Attempts to gain access to endpoints
• Unusual cluster behavior
• Stolen credentials

• Misconfigured RBAC
• Exploitation of vulnerabilities in Kubernetes API servers
• Violations of security policies

“...machine learning can develop a picture of what typical,
secure behavior looks like in the workload and use it to identify

outlier behaviors that may indicate nefarious activity.”

Securing Kubernetes With InsightCloudSec 10

At Rapid7, we solved this challenge with microservices firewalls. We enable developers to package security policies into
agents that can be bundled with microservices during the build process. During runtime, the agent goes wherever micro-
services are running, and provides visibility across cloud infrastructure, enabling administrators to see how applications
are deployed and to manage security for far-flung containers. Microservices provide awareness into where applications
are running and how they should act security wise, which they share with administrators. With a microservices firewall,
administrators can search for, isolate, control, and enforce specific security policies in real time.

The microservices firewall also extends protection to the APIs used by microservices to communicate with each other.
Machine learning algorithms watch network traffic through APIs in real time to detect suspicious behavior and prevent
suspected breaches from propagating. Finally, the rich data provided by the microservices firewall can then be shared
with developers to create a feedback loop to improve security for future versions of the microservices.

Kubernetes and the software development lifecycle it enables brings speed, agility, and elasticity to cloud-native applica-
tions. Kubernetes’s benefits also come with unique responsibilities for securing workloads, containers, infrastructure, as
well as the organization itself. In order to realize the benefits of a Kubernetes-based infrastructure, enterprises must also
evolve their security practices.

Enterprises on a Kubernetes journey cannot apply the traditional security solutions that once protected on-site servers or
VMs, as those are not designed for the unique development practices and distributed environments with which Kuber-
netes excels. Enterprises must expand their existing security programs to cover the entire Kubernetes software lifecycle
with solutions that are intentionally built to solve for the increased scale and complexity of cloud-native environments.

Rapid7 has the experience and technology to protect enterprises using Kubernetes with InsightCloudSec. The Kuberne-
tes security functionality built into InsightCloudSec is designed to address the specific needs of DevOps teams working
with Kubernetes. Our years of experience have helped us gain a deep understanding into how Kubernetes works, how
developers work with Kubernetes, and how attackers attempt to penetrate Kubernetes-native applications. We invite you
to join us to learn how InsightCloudSec integrates Kubernetes security into a full cloud-native security solution.

Are you on a Kubernetes journey? Contact us today to see how InsightCloudSec can help you drive innovation through
continuous cloud security and compliance.

Securing Kubernetes With InsightCloudSec 11

Cloud-Native Security Must Match the Kuberne-
tes Software Lifecycle

https://www.rapid7.com/products/divvycloud/#form ?

